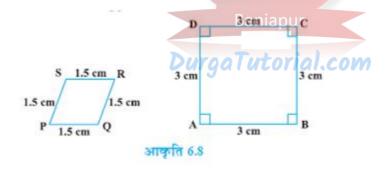
6. त्रिभुज


प्रश्नावली 6.1

Q1. कोष्ठकों में दिए शब्दों में से सही शब्दों का प्रयोग करते हुए, रिक्त स्थानों को भरिए:

- (i) सभी वृत्तहोते है | (सर्वांगसम, समरूप)
- (ii) सभी वर्ग......होते हैं। (समरूप, सर्वांगसम)
- (iv) सभी त्रिभुज समरूप होते है | (समद्विबाहु, समबाहु)
- (v) भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि (i) उनके संगत कोणहो तथा (ii) उनकी संगतभुजाएँ हों | (बराबर, समानुपाती|

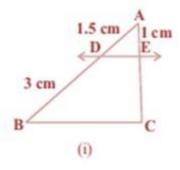
Q2. निम्नलिखित युग्मों के दो भिन्न -भिन्न उदाहरण दीजिए:

- (i) समरूप आकृतियाँ
- (ii) ऐसी आकृतियाँ जो समरूप नहीं हैं |
- Q3. बताइए की निम्नलिखित चतुर्भुज समरूप है या नहीं:

प्रश्नावली 6.2

Q1. आकृति 6.17 (i) और (ii) में, DE \parallel BC में AD ज्ञात कीजिए :

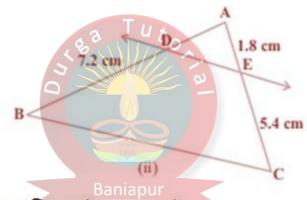
हल: (i)


Δ ABC में

DE || BC दिया है |

अत: आधारभूतिक समानुपातिक प्रमेय से

$$\therefore \quad \frac{AD}{BD} = \frac{AE}{CE}$$


$$\Rightarrow \frac{1.5}{3} = \frac{1}{CE}$$

$$\Rightarrow$$
 CE = $\frac{3}{1.5} = \frac{30}{15} = 2$

∆ ABC में

DE || BC दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से Durga Tutorial.co

$$\therefore \quad \frac{AD}{BD} = \frac{AE}{CE}$$

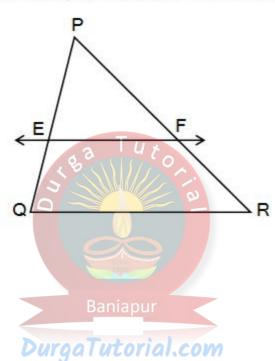
$$\Rightarrow \frac{1.5}{3} = \frac{1}{CE}$$

$$\Rightarrow$$
 CE = $\frac{3}{1.5} = \frac{30}{15} = 2$

Q2. किसी त्रिभुज PQR की भुजाओं PQ और PR पर क्रमशः बिन्दु E और F स्थित हैं | निम्नलिखित में से प्रत्येक स्थिति के लिए, बताइए कि क्या EF|| QR है |

- (i) PE = 3.9 cm, EQ= 3cm, PF = 3.6 और FR= 2.4 cm
- (ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm और RF = 9 cm
- (iii) PQ = 1.28 cm, PR = 2.56 cm, 0.18 cm और PF = 0.36 cm

हल Q2:


$$\frac{PE}{EQ} = \frac{PF}{FR}$$

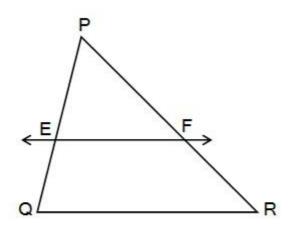
$$\Rightarrow \frac{3.9}{3} = \frac{3.6}{2.4}$$

$$\Rightarrow \frac{39}{30} = \frac{36}{24}$$

$$\Rightarrow \frac{13}{10} = \frac{3}{2}$$

$$\Rightarrow \frac{13}{10} \neq \frac{3}{2}$$

इसलिए, EF|| QR नहीं है |


(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm और RF = 9 cm

$$\therefore \frac{PE}{EQ} = \frac{PF}{FR}$$

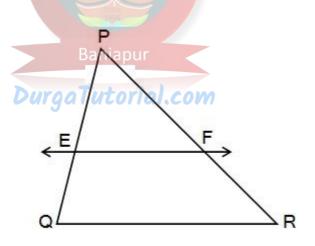
$$\Rightarrow \frac{4}{4.5} = \frac{8}{9}$$

$$\Rightarrow \quad \frac{40}{45} = \frac{8}{9}$$

$$\Rightarrow \frac{8}{9} = \frac{8}{9}$$

अतः आधारभूतिक समानुपातिक प्रमेय के विलोम से

इसलिए, EF|| QR है |


(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm और PF = 0.36 cm

$$\therefore \frac{PE}{PQ} = \frac{PF}{PR}$$

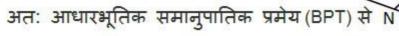
$$\Rightarrow \quad \frac{0.18}{1.28} = \frac{0.36}{2.56}$$

$$\Rightarrow \quad \frac{18}{128} = \frac{36}{256}$$

$$\Rightarrow \frac{9}{64} = \frac{9}{64}$$

अतः आधारभूतिक समानुपातिक प्रमेय के विलोम से

इसलिए, EF|| QR है |


Q3. आकृति 6.18 में यदि LM || CB और LN || CD हो तो सिद्ध कीजिए कि

$$\frac{AM}{AB} = \frac{AN}{AD} \stackrel{?}{\xi}$$

हल:

△ ABC में

ML || BC दिया है |

$$\therefore \quad \frac{AM}{BM} = \frac{AL}{CL} \qquad \dots (1)$$

△ ACD में

NL || DC दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{AN}{ND} = \frac{AL}{CL}$$

समीकरण (1) तथा (2) से

$$\frac{AM}{BM} = \frac{AN}{ND}$$

व्युत्क्रमानुपाती लेने पर

$$\frac{BM}{AM} = \frac{ND}{AN}$$

<u>Baniapur</u>

M

DurgaTutorial.com

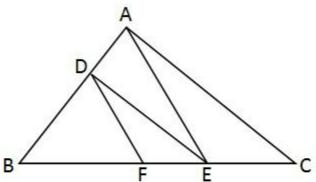
दोनों तरफ 1 जोड़ने पर

$$\frac{BM}{AM} + 1 = \frac{ND}{AN} + 1$$

$$\frac{BM + AM}{AM} = \frac{ND + AN}{AN}$$

$$\frac{AB}{AM} = \frac{AD}{AN}$$

पुन: व्युत्क्रमानुपाती लेने पर


$$\frac{AM}{AB} = \frac{AN}{AD}$$
 Proved

Q4. आकृति 6.19 में DE || AC और DF || AE है | सिद्ध कीजिए कि $\frac{BF}{FE} = \frac{BE}{EC}$ है

हल:

∆ ABC में

DE || AC दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{BD}{AD} = \frac{BE}{EC}$$

Δ ABE में

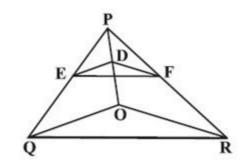
DF || AE दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \quad \frac{BD}{AD} = \frac{BF}{FE}$$

Durga(2)torial.com

समीकरण (1) तथा (2) से


$$\frac{BF}{FE} = \frac{BE}{EC}$$

Q5. आकृति 6.20 में DE || OQ और OR है | दर्शाइए की EF || QR है |

हल:

Δ POQ में

DE || OQ दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{PE}{EQ} = \frac{PD}{DO} \qquad \dots (1)$$

Δ POR में

DF || OR दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{PF}{FR} = \frac{PD}{DO}$$

.....(2)niapur

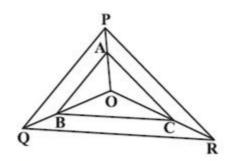
DurgaTutorial.com

समीकरण (1) तथा (2) से

$$\frac{PE}{EQ} = \frac{PF}{FR}$$

चूँकि भुजाएँ समानुपातिक है |

इसलिए, आधारभूतिक समानुपातिक प्रमेय (BPT) के विलोम से


EF || QR Proved

Q6. आकृति 6.21 में क्रमशः OP, OQ और OR पर स्थित बिन्दु A,B और C इस प्रकार है कि AB || PQ और AC || PR है | दर्शाइए कि BC || QR है |

हल:

Δ POQ में,

AB || PQ दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{OA}{AP} = \frac{OB}{BQ}$$

Δ POR में

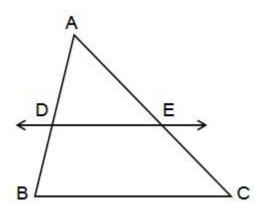
AC || PR दिया है |

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{OA}{AP} = \frac{OC}{CR}$$

Durga(2)torial.com

समीकरण (1) तथा (2) से


$$\frac{OB}{BO} = \frac{OC}{CR}$$

चूँकि भुजाएँ समानुपातिक है |

इसलिए, आधारभूतिक समानुपातिक प्रमेय (BPT) के विलोम से

BC || QR Proved

Q7. प्रमेय 6.1 का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य -बिन्दु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्धिभाजित करती है । (याद कीजिए की आप इसे कक्षा IX में सिद्ध कर चुके हैं।)

हल:

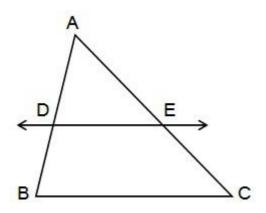
दिया है : ABC एक त्रिभुज है जिसकी

भुजा AB का मध्य-बिंदु D है और DE || BC है |

सिंख करना है : AE = EC

प्रमाण : △ ABC में

DE || BC दिया है |


अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{AD}{BD} = \frac{AE}{CE}$$

अथवा
$$\frac{AD}{AD} = \frac{AE}{CE}$$
 (समीकरण 1 से)

अथवा
$$\frac{1}{1} = \frac{AE}{CE}$$
 (Bi-cross multiplication)

Q8. प्रमेय 6.2 का प्रयोग करते हुए सिद्ध कीजिए की एक त्रिभुज की किन्ही दो भुजाओं के मध्य बिन्दुओं को मिलाने वाली रेखा तीसरी भुजा के समांतर होती है | (याद कीजिए की आप कक्षा IX में ऐसा कर चुके हैं) |

हल:

दिया है : ABC एक त्रिभुज है जिसकी

भुजा AB तथा AC का मध्य-बिंदु क्रमश:

D तथा E है |

सिद्ध करना है : DE || BC

Baniapur

DurgaTutorial.com

प्रमाण : △ ABC में

$$\therefore \frac{AD}{BD} = \frac{AE}{CE}$$

अथवा
$$\frac{AD}{AD} = \frac{AE}{AE} = \frac{1}{1}$$
 (समीकरण 1 तथा 2 से)

Q9. ABCD एक समलंब है जिसमे AB || DC है तथा इसके विकर्ण परस्पर

बिन्दु O पर प्रतिच्छेद करते है | दर्शाइए की $\frac{AO}{BO}$ = $\frac{CO}{DO}$ है |

हल:

दिया है : ABCD एक समलंब है जिसमें

AB || CD है | और विकर्ण AC तथा BD एक दुसरे को बिंदु O पर प्रतिच्छेद करते हैं |

सिंद्ध करना है : $\frac{AO}{BO} = \frac{CO}{DO}$

रचना : बिंदु O से AB || EO खिंचा |

प्रमाण : AB || EO(1) रचना से

AB || CD(2) दिया है |

समीकरण (1) तथा (2) से

EO || CDB(3)apur

∆ ABD में DurgaTutorial.com

AB || EO रचना से

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

 $\therefore \frac{AE}{ED} = \frac{BO}{DO} \qquad (4)$

इसीप्रकार, A ABD में

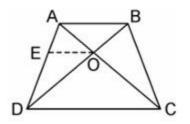
अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{AE}{ED} = \frac{AO}{CO} \qquad (5)$$

समीकरण (4) तथा (4) से

$$\frac{AO}{CO} = \frac{BO}{DO}$$

अथवा
$$\frac{AO}{BO} = \frac{CO}{DO}$$
 [एकान्तरानुपात (alternendo) लगाने पर]


Proved

Q10. एक चतुर्भुज ABCD के विकर्ण परस्पर बिन्दु O पर इस प्रकार प्रतिच्छेद करते है कि $\frac{AO}{BO} = \frac{CO}{DO}$ है | दर्शाइए कि ABCD एक समलंब है |

हल:

दिया है : ABCD एक चतुर्भुज है जिसके विकर्ण

AC तथा BD एक दुसरे को बिंदु O पर प्रतिच्छेद करते हैं |

और
$$\frac{AO}{BO} = \frac{CO}{DO}$$
 है |

सिद्ध करना है : ABCD एक समलंब है ।

रचना : बिंदु O से AB || EO खिंचा |

प्रमाण : A ABD में

AB || EO रचना से Baniapur

DurgaTutorial.com

अतः आधारभूतिक समानुपातिक प्रमेय (BPT) से

$$\therefore \frac{AE}{ED} = \frac{BO}{DO} \dots \dots \dots \dots (1)$$

जबिक, $\frac{AO}{BO} = \frac{CO}{DO}$

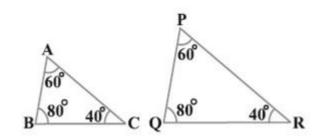
अथवा $\frac{AO}{CO} = \frac{BO}{DO}$ (2) [एकान्तरानुपात (alternendo) लगाने पर]

$$\frac{AE}{ED} = \frac{AO}{CO}$$

△ ACD की संगत खंड की भुँजायें समानुपाती हैं | इसलिए आधारभ्तिक समानुपातिक प्रमेय (BPT) के विलोम प्रमेय 6.2 से

समीकरण (3) तथा (4) से

AB || CD


अत: ABCD एक समलंब है

Proved

DurgaTutorial.com

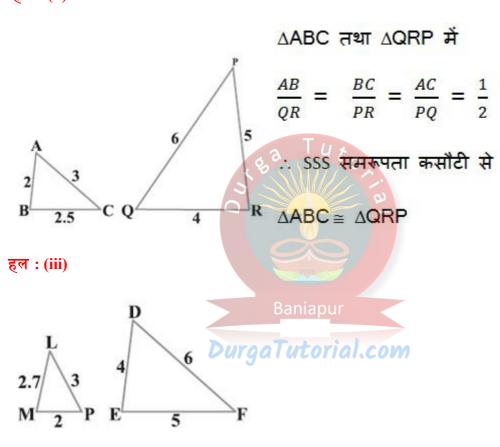
प्रश्नावली 6.3

Q1. बताइए कि आकृति 6.34 में दिए त्रिभुजों के युग्मों में से कौन - कौन से युग्म समरूप हैं | उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देनें में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए |

हल: (i)

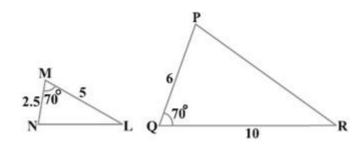
 ΔABC तथा ΔPQR में

$$\angle ABC = \angle PQR = 80^{\circ}$$

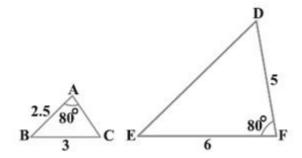

$$\angle BAC = \angle QPR = 60^{\circ}$$

$$\angle ACB = \angle PRQ = 40^{\circ}$$

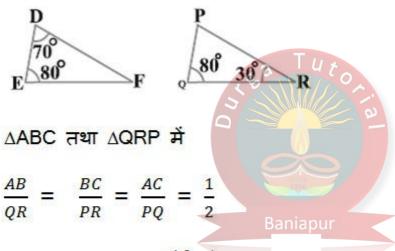
∴ AAA समरूपता कसौटी से


 $\Delta ABC \sim \Delta PQR$

हल : (ii)

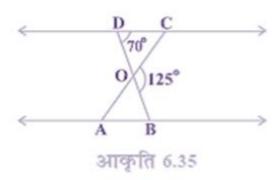

त्रिभुजों का यह युग्म समरूप नहीं है |

हल: (iv)


त्रिभुजों का यह युग्म समरूप नहीं है |

हल: (v)

त्रिभुजों का यह युग्म समरूप नहीं है |


हल: (vi)

: SSS समरूपता कसौटी सेurgaTutorial.com

ΔABC ≅ ΔQRP

Q2. आकृति 6.35 में, ΔODC ~ ΔOBA, ∠BOC = 125° और ∠CDO = 70° है | ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए |

हल : $\angle DOC + \angle BOC = 180^{\circ}$ (रैखिक युग्म)

$$\Rightarrow$$
 \angle DOC +125° = 180°

$$\Rightarrow$$
 \angle DOC = 180° - 125°

$$\Rightarrow$$
 \angle DOC = 55°

अब ∆DOC में,

∠DOC + ∠CDO + ∠DCO = 180° (त्रिभुज के तीनों कोणों का योग)

$$\Rightarrow 55^{\circ} + 70^{\circ} + \angle DCO = 180^{\circ}$$

$$\Rightarrow$$
 \angle DCO = 180° - 125°

$$\Rightarrow$$
 \angle DCO = 55°

 $\Delta \text{ODC} \sim \Delta \text{OBA}$ (दिया है)

$$\therefore$$
 \angle OAB = \angle DCO = 55°

समरूप त्रिभुज के संगत कोण बराबर होते हैं|)

दर्शाइए कि
$$\frac{OA}{OC} = \frac{OA}{OC}$$
 है |

हल :

दिया है : समलंब ABCD,

जिसमे AB || DC है, के विकर्ण AC और

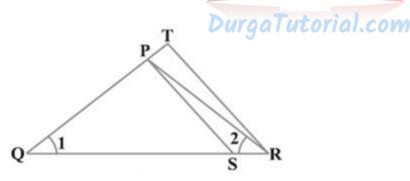
BD परस्पर O पर प्रतिच्छेद करते हैं ।

सिद्ध करना है : $\frac{OA}{OC} = \frac{OA}{OC}$

प्रमाण: AB || CD दिया है

अब ∆AOB तथा ∆COD में

∠ABO = ∠DCO (1) 社


∠AOB = ∠COD (शीर्षाभिमुख कोण)

A.A समरूपता कसौटी से

 \triangle AOB $\sim \triangle$ COD

$$\therefore \frac{OA}{OC} = \frac{OB}{OD}$$
 (समरूप त्रिभुज के संगत भुजा समानुपाती होते हैं |)

Q4. आकृति 6.36 में, $\frac{OR}{QS} = \frac{QT}{PR}$ तथा $\angle 1 = \angle 2$ है | दर्शाइए की $\angle PQS \sim \angle TQR$ है |

हल:

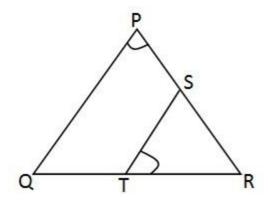
दिया है :
$$\frac{OR}{QS} = \frac{QT}{PR}$$
 तथा $\angle 1 = \angle 2$ है |

सिद्ध करना है : APQS ~ ATQR

प्रमाण : APQR में,

और
$$\frac{OR}{OS} = \frac{QT}{PR}$$
 दिया है

या
$$\frac{OR}{QS} = \frac{QT}{PQ}$$
 समी॰ (1) से(2)


∆PQS तथा ∆TQR में

$$\frac{OR}{QS} = \frac{QT}{PQ}$$
 समी॰ (2) से

SAS समरूपता कसौटी से PurgaTutorial.com

ΔPQS ~ ΔTQR Proved

Q5. DPQR की भुजाओं PR और QR पर क्रमशः बिंदु S और T इस प्रकार स्थित हैं कि ∠P = ∠RTS है | दर्शाइए कि Δ RPQ ~ Δ RTS है |


```
हल:
```

 $\angle R = \angle R$ (उभयनिष्ठ)

A.A समरूपता कसौटी से

 $\Delta \text{RPQ} \sim \Delta \text{RTS}$

Q6. आकृति 6.37 में, यदि $\triangle ABE \cong \triangle ACD$ है, तो दर्शाइए कि $\triangle ADE \sim \triangle ABC$ है |

Durga Tutorial.com

हल:

सिद्ध करना है : AADE ~ AABC

प्रमाण : $\triangle ABE \cong \triangle ACD$ (दिया है)

$$AB = AC$$

$$AE = AD$$

$$AE = AB = 1$$

अथवा $\frac{AE}{AD} = \frac{AB}{AC} = \frac{1}{1}$ (1)

$$\frac{AE}{AD} = \frac{AB}{AC}$$
 ...समी॰ (1) से $\angle A = \angle A$ (उभयनिष्ठ)

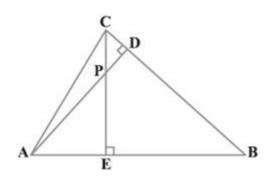
S.A.S समरूपता कसौटी सेaniapur

ΔADE ~ ΔABC ur Provedorial.com

Q7. आकृति 6.38 में, DABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं तो दर्शाइए कि:

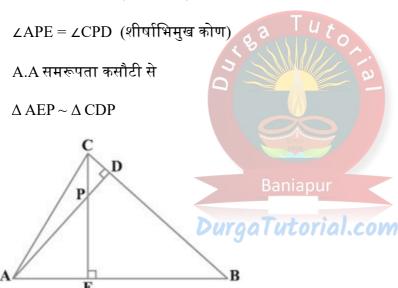
- (i) \triangle AEP \sim \triangle CDP
- (ii) \triangle ABD \sim \triangle CBE
- (iii) \triangle AEP \sim \triangle ADB
- (iv) \triangle PDC \sim \triangle BEC

हल:


दिया है : DABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं |

सिद्ध करना है:

- (i) \triangle AEP \sim \triangle CDP
- (ii) \triangle ABD \sim \triangle CBE


- (iii) \triangle AEP \sim \triangle ADB
- (iv) \triangle PDC \sim \triangle BEC

प्रमाण:

(i) Δ AEP तथा Δ CDP में,

 $\angle AEP = \angle CDP \ (प्रत्येक 90^\circ)$

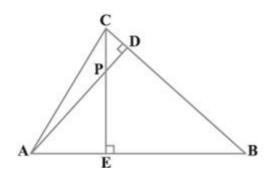
(ii) Δ ABD तथा CBE में

$$\angle ADB = \angle CEB \ (प्रत्येक 90^\circ)$$

$$\angle B = \angle B$$
 (उभयनिष्ठ)

A.A समरूपता कसौटी से

 $\Delta~ABD \sim \Delta~CBE$


(iii) Δ AEP तथा Δ ADB में

 $\angle AEP = \angle ADB \ (प्रत्येक 90^\circ)$

 $\angle A = \angle A$ (उभयनिष्ठ)

A.A समरूपता कसौटी से

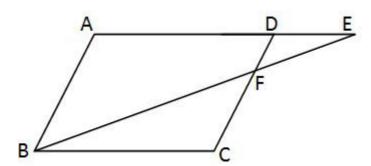
 \triangle AEP \sim \triangle ADB

(iv) Δ PDC तथा Δ BEC में

∠PDC = ∠BEC (प्रत्येक 90°)

 $\angle C = \angle C$ (उभयनिष्ठ)

A.A समरूपता कसौटी से


 \triangle PDC \sim \triangle BEC

Q8. समान्तर चतुर्भुज ABCD की बढाई गई भुजा AD पर स्थित E एक बिंदु है तथा BE भुजा CD को F पर प्रतिच्छेद करती है | दर्शाइए कि Δ ABE \sim Δ CFB है |

हल:

DurgaTutorial.com

दिया है : ABCD एक समान्तर चतुर्भुज है जिसकी बढाई गई भुजा AD पर स्थित E एक बिंदु है तथा BE भुजा CD को F पर प्रतिच्छेद करती है |

सिद्ध करना है : \triangle ABE \sim \triangle CFB

प्रमाण : ABCD एक समान्तर चतुर्भुज है |

 $\angle AEB = \angle CBE \dots (1)$ एकान्तर कोण

 \triangle ABE तथा \triangle CFB में,

∠AEB = ∠CBE समी० (1) से

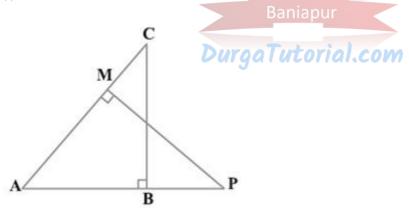
∠A = ∠C (समांतर चतुर्भुज के सम्मुख कोण)

A.A समरूपता कसौटी से

 \triangle ABE \sim \triangle CFB

Q9. आकृति 6.39 में, ABC और AMP दो समकोण त्रिभुज है, जिसके कोण B और M समकोण हैं | सिद्ध कीजिए कि :

(i) \triangle ABC \sim \triangle AMP


(ii)
$$\frac{CA}{PA} = \frac{BC}{MP}$$

हल:

दिया है: ABC और AMP दो समकोण त्रिभुज है, जिसके कोण B और M समकोण हैं |

सिद्ध करना है:

(i) \triangle ABC \sim \triangle AMP

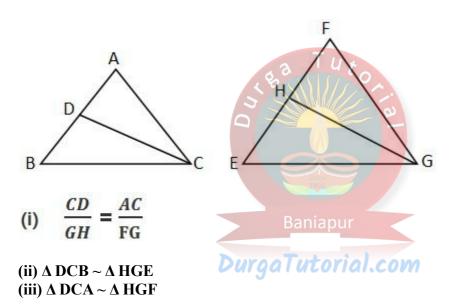
(ii)
$$\frac{CA}{PA} = \frac{BC}{MP}$$

प्रमाण:

(i) Δ ABC तथा Δ AMP में

∠ABC = ∠AMP (प्रत्येक 90°)

$$\angle A = \angle A$$
 (उभयनिष्ठ)


A.A समरूपता कसौटी से

 Δ ABC \sim Δ AMP

(ii)
$$\frac{CA}{PA} = \frac{BC}{MP}$$

(चूँकि समरूप त्रिभुज के संगत भुजाएँ समानुपाती होतीं हैं |)

Q10. CD और GH क्रमश: \angle ACB और \angle EGF के ऐसे समद्विभाजक हैं कि बिंदु D और H क्रमश: \triangle ABC और \triangle FEG की भुजाओं AB और FE पर स्थित हैं | यदि \triangle ABC \sim \triangle FEG है, तो दर्शाइए कि :

हल:

दिया है : CD और GH क्रमश: ∠ ACB और ∠ EGF के ऐसे समद्विभाजक हैं कि बिंदु D और H क्रमश: Δ ABC और Δ FEG की भुजाओं AB और FE पर स्थित हैं और Δ ABC \sim Δ FEG है |

सिद्ध करना है:

(i)
$$\frac{CD}{GH} = \frac{AC}{FG}$$

- (ii) Δ DCB ~ Δ HGE
- (iii) Δ DCA ~ Δ HGF

प्रमाण:

ΔABC ~ ΔFEG दिया है |

(समरूप त्रिभुज के संगत कोण बराबर होते हैं।)

- (i) ∆ ABC तथा ∆ AMP में
- (ii) Δ DCB तथा Δ HGE में, Durga Tutorial.com

Baniapur

∠B = ∠E समी० (2) से

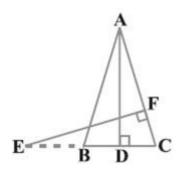
 \angle BCD = \angle EGH [चूँकि ½∠C = ½∠G समी० (3) से]

A.A समरूपता कसौटी से

 Δ DCB \sim Δ HGE

(iii) Δ DCA तथा Δ HGF में ∠A = ∠F समी० (1) से

∠ACD = ∠FGH [चूँकि ½∠C = ½∠G समी० (3) से]


A.A समरूपता कसौटी से

 Δ DCA \sim Δ HGF **Proved**

Q11. आकृति 6.40 में, AB = AC वाले, एक समद्विबाहु त्रिभुज ABC की बढाई गई भुजा CB पर स्थित E एक बिन्दु है | यदि AD \perp BC और EF \perp AC है तो सिद्ध कीजिए कि \triangle ABD \sim \triangle ECF है |

हल:

दिया है : AB = AC वाले, एक समद्विबाहु त्रिभुज ABC की बढाई गई भुजा CB पर स्थित E एक बिन्दु है जिसमें $AD \perp BC$ और $EF \perp AC$ है

सिद्ध करना है:

 $\Delta ABD \sim \Delta ECF$

प्रमाण:

 ΔABC में,

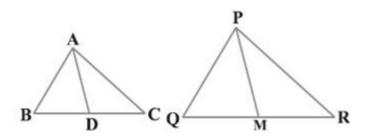
AB = AC दिया है;

∴ ∠B = ∠C(1) (बराबर भुजाओं के सम्मुख कोण)

अब, \triangle ABD तथा \triangle ECF में

 $\angle ADB = \angle EFC (प्रत्येक 90°)$

 $\angle B = \angle C$ समी० (1) से


A.A समरूपता कसौटी से

 $\triangle ABD \sim \triangle ECF$ Proved

Q12. एक त्रिभुज ABC कि भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमशः भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती हैं (देखिए आकृति 6.41)| दर्शाइए कि $\Delta ABC \sim \Delta PQR$ है |

हल:

दिया है : त्रिभुज ABC कि भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमशः भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती हैं |

सिद्ध करना है:

 $\Delta ABC \sim \Delta PQR$

प्रमाण:

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$
 (दिया है)
अथवा $\frac{AB}{PQ} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR} = \frac{AD}{PM}$
अथवा $\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$ (1)

(चूँकि माध्यिकाएँ AD तथा PM BC तथा QR को समद्विभाजित करती हैं |)

DurgaTutorial.com

अब, AABD तथा APQM में,

$$\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$
 समी॰ (1) से

S.S.S समरूपता कसौटी से

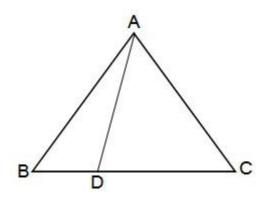
ΔABD ~ ΔPQM

अब, AABC तथा APQR में

$$\frac{AB}{PO} = \frac{BC}{OR}$$
 (दिया है)

और ∠B = ∠Q समी॰ (2) से

S.A.S समरूपता कसौटी से


ΔABC ~ ΔPQR Proved

Q13. एक त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है | दर्शाइए कि $CA^2 = CB.CD$ है |

हल:

DurgaTutorial.com

दिया है : त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है |

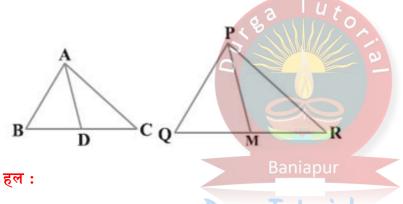
सिद्ध करना है: $CA^2 = CB.CD$

प्रमाण:

अब, ΔADC तथा ΔBAC में

$$\angle C = \angle C$$
 (उभयनिष्ठ)

A.A समरूपता कसौटी से


 $\Delta ADC \sim \Delta BAC$

$$\frac{AC}{CB} = \frac{CD}{AC}$$
 (चूँकि समरूप त्रिभुज के संगत भुजाएँ समानुपाती होतीं हैं |)

या CA² = CB.CD (बाई-क्रॉस गुणा करने पर)

Proved

Q14. एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज की भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं | दर्शाइए कि Δ ABC \sim Δ PQR है |

दिया है : ABC और APQR में

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$
 है और AD तथा PM माध्यिकायें हैं |

सिंख करना है : ΔABC ~ ΔPQR

प्रमाण :
$$\frac{AB}{PO} = \frac{AC}{PR} = \frac{AD}{PM}$$
(1) दिया है |

यहाँ माध्यिकाएँ समान अनुपात में हैं इसलिए समान अनुपात की माध्यिकायें जिस भुजा को समद्विभाजित करती है वह भी समानुपाती होता है |

$$\therefore \frac{AD}{PM} = \frac{BC}{QR} \dots (2)$$

समी॰ (1) तथा (2) से

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR} \qquad(3)$$

ΔABC तथा ΔPQR में

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR}$$
 .समी. (3) से

S.S.S समरूपता कसौटी से

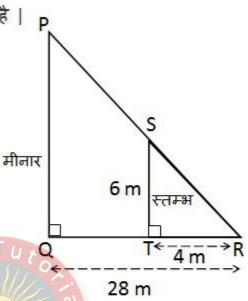
ΔABC ~ ΔPQR Proved 00 Tuto

Q15. लंबाई 6m वाले एक उध्वार्धर स्तम्भ की भूमि पर छाया की लंबाई 4m है, जबिक उसी समय एक मीनार की छाया की लंबाई 28 m है | मीनार की ऊँचाई ज्ञात कीजिए |

Baniapur Durga Tutorial.com

हल:

माना PQ मीनार है जबकि ST स्तम्भ है | TR स्तम्भ


की छाया है और QR मीनार की छाया है | p

ΔPQR तथा ΔSTR में,

∠R = ∠R (3भयनिष्ठ)

A.A समरूपता कसौटी से

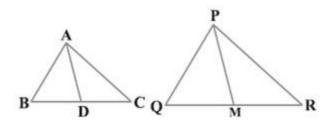
ΔPQR ~ ΔSTR

 $\frac{PQ}{ST} = \frac{QR}{TR}$ (समरूप त्रिभुज के संगत भुजाएँ समानुपाती होती हैं)

या
$$\frac{PQ}{6} = \frac{28}{4}$$

Baniapur

या 4 PQ = 6 × 28 DurgaTutorial.com


या PQ =
$$\frac{6 \times 28}{4}$$
 = 42 m

अत: मीनार की ऊँचाई = 42 m

Q16. AD और PM त्रिभुजों ABC और PQR की क्रमशः माध्यिकाएं हैं, जबकि ΔABC ~ ΔPQR है |

सिद्ध कीजिए कि $\frac{AB}{PQ} = \frac{AD}{PM}$ है |

दिया है : AD और PM त्रिभुजों ABC और PQR की क्रमशः माध्यिकाएं हैं, जबिक ΔABC ~ ΔPQR है |

सिंख करना है : $\frac{AB}{PQ} = \frac{AD}{PM}$

प्रमाण : ΔABC ~ ΔPQR दिया है | 1 4 /

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR}$$
 (समरूप त्रिभुज के संगत भुजाएँ समानुपाती होती हैं)

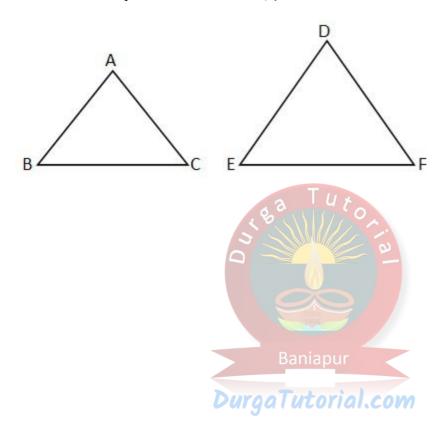
या
$$\frac{AB}{PQ} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR}$$

या
$$\frac{AB}{PQ} = \frac{BD}{QM}$$
 (1)

और ∠B = ∠Q(2) (समरूप त्रिभुज के संगत कोण)

ΔABD तथा ΔPQM में,

$$\frac{AB}{PO} = \frac{BD}{OM}$$
 (1) से


SAS समरूपता कसौटी से

ΔABD ~ ΔPQM

$$\frac{AB}{PO} = \frac{AD}{PM}$$
 Proved

प्रश्नावली 6.4

Q1. मान लीजिए $\Delta ABC \sim \Delta DEF$ और इनके क्षेत्रफल क्रमशः $64cm^2$ और $121~cm^2$ हैं | यदि $EF=15.4~cm^2$ हो, तो BC ज्ञात कीजिए |

हल: ΔABC ~ ΔDEF (दिया है)

∴ प्रमेय 6.6 से

$$\frac{ar(ABC)}{ar(DEF)} = \left(\frac{BC}{EF}\right)^2$$

$$\frac{64}{121} = \left(\frac{BC}{15.4}\right)^2$$

या
$$\sqrt{\frac{64}{121}} = \frac{BC}{15.4}$$

या
$$\frac{8}{11} = \frac{BC}{15.4}$$

$$BC = \frac{8 \times 15.4}{11}$$

$$= \frac{8 \times 154}{110} = \frac{8 \times 14}{10} = \frac{112}{10} = \frac{112}$$

Q2. एक समलंब ABCD जिसमें AB \parallel DC हैं, के विकर्ण परस्पर बिन्दु O पर प्रतिच्छेद करते हैं \mid यदि AB = 2 CD हो तो \triangle AOB और \triangle COD के क्षेत्रफलों का अनुपात ज्ञात कीजिए \mid

हल:

दिया है: ABCD एक समलंब है जिसमें AB || DC हैं,

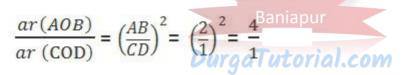
के विकर्ण परस्पर बिन्दु O पर प्रतिच्छेद करते हैं | और $AB = 2 \ CD \$ है |

$$AB = 2 CD (दिया है)$$

$$\therefore \frac{AB}{CD} = \frac{2}{1} \qquad \dots \dots (1)$$

अब, AB || DC (दिया है)

ΔAOB और ΔCOD में,


∠AOB = ∠COD शीर्षाभिमुख कोण

∠ABO = ∠CDO समी॰ (2) से

A.A समरूपता कसौटी से

ΔAOB ~ ΔCOD

अतः प्रमेय 6.6 से

ΔΑΟΒ और ΔCOD के क्षेत्रफलों का अनुपात 4: 1 है |

Q3. आकृति 6.44 में एक ही आधार BC पर दो त्रिभुज ABC और DBC बने हुए हैं | यदि AD,BC कोप O पर प्रतिच्छेद करे, तो दर्शाइए की ar(ABC)/ar(DBC) AO/DO है |

Q4.यदि दो समरूप तित्रभुजों के क्षेत्रफल बराबर हों तो सिद्ध कीजिए कि वे त्रिभुज सर्वान्गसम होते हैं

- Q5. एक त्रिभुज ABC की भुजाओं AB,BC और CA के मध्य बिन्दु क्रमशः D, E और F हैं | त्रिभुज DEF और त्रिभुज ABC के क्षेत्रफलों का अनुपात ज्ञात कीजिए|
- Q6. सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात इनकी संगत माध्यिकाओं के अनुपात का वर्ग होता है |
- Q7. सिद्ध कीजिए कि दो एक वर्ग की किसी भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का आधा होता है |

Q8. ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कोई भुजद BC का मध्य - बिन्दु है | त्रिभुजों ABC और BDE के क्षेत्रफलों का अनुपात है:

- (A) 2:1
- (B) 1:2
- (C) 4:1 (D) 1:4
- Q9. दो समरूप त्रिभुजों की भुजाएँ 4:9 के अनुपात में हैं | इन त्रिभुजों के क्षेत्रफलों का अनुपात है :
- (A) 2:3
- (B) 4:9
- (C) 81:16 (D) 16:81

प्रश्नावली 6.5

Q1. कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धरित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

- (i) 7 cm, 24 cm, 25 cm (ii) 3 cm, 8 cm, 6 cm
- (iii) 50 cm, 80 cm, 100 cm (iv) 13 cm, 12 cm, 5 cm

हल:

(i) 7 cm, 24 cm, 25 cm

कर्ण 2 = लंब 2 + आधार 2

$$25^2 = 7^2 + 24^2$$

$$625 = 49 + 576$$

$$625 = 625$$

DurgaTutorial.com

चुँकि वायां पक्ष और दायां पक्ष बराबर है |

इसलिए ये भुजाएँ समकोण त्रिभुज की है |

अत: कर्ण = 25 cm (सबसे बड़ी भुजा कर्ण होती है)

(ii) 3 cm, 8 cm, 6 cm

हल: निम्न मानों को पाइथागोरस प्रमेय में रखने पर

कर्ण
2
 = लंब 2 + आधार 2

$$8^2 = 3^2 + 6^2$$

$$64 = 9 + 36$$

$$64 = 45$$

चूँकि वायां पक्ष और दायां पक्ष बराबर नहीं है |

इसलिए ये भुजाएँ समकोण त्रिभुज की नहीं है |

(iii) 50 cm, 80 cm, 100 cm

हल: निम्न मानों को पाइथागोरस प्रमेय में रखने पर

कर्ण
$$^{2} = लंब^{2} + आधार^{2}$$

$$100^2 = 50^2 + 80^2$$

$$10000 = 2500 + 6400$$

$$10000 = 8900$$

चूँकि वायां पक्ष और दायां पक्ष बराबर नहीं है।

इसलिए ये भुजाएँ समकोण त्रिभुज की नहीं है।

(iv) 13 cm, 12 cm, 5 cm

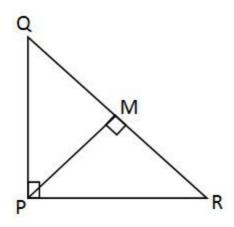
हलः निम्न मानों को पाइथागोरस प्रमेय में रखने पर

कर्ण
2
 = लंब 2 + आधार 2

कर्ण $^2 = लंब^2 + आधार^2$ Durga Tutorial.com

$$13^2 = 5^2 + 12^2$$

$$169 = 25 + 144$$


$$169 = 169$$

चूँकि वायां पक्ष और दायां पक्ष बराबर है |

इसलिए ये भुजाएँ समकोण त्रिभुज की है |

अत: कर्ण = 13 cm (सबसे बड़ी भुजा कर्ण होती है)

Q2. PQR एक समकोण त्रिभुज है जिसका कोण P समकोण है तथा QR पर बिंदु M इस प्रकार स्थित है कि PM \perp QR है | दर्शाइए कि PM² = QM . MR है |

दिया है: PQR एक समकोण त्रिभुज है

जिसका कोण P समकोण है तथा QR

पर बिंदु M इस प्रकार स्थित है कि $PM \perp QR$ है |

सिद्ध करना है: $PM^2 = QM \cdot MR$

प्रमाण : PM ⊥ QR दिया है |

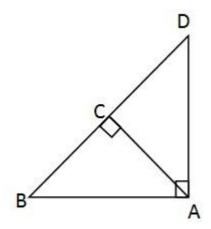
इसलिए प्रमेय 6.7 से

 $\Delta PMQ \sim \Delta PRQ$ (1)

इसीप्रकार,

 $\Delta PMR \sim \Delta PRQ$ (1)

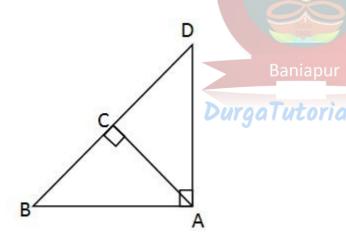
समीकरण (1) तथा (2) से


 $\Delta PMQ \sim \Delta PMR$

अतः
$$\frac{PM}{QM} = \frac{MR}{PM}$$
 (समरूप त्रिभुज की संगत भुजाएँ समानुपाती होती हैं)

DurgaTutorial.com

$$\therefore PM^2 = QM \cdot MR$$


Q3. आकृति 6.53 में ABD एक समकोण त्रिभुज है | जिसका कोण A समकोण है तथा AC \perp BD है | दर्शाइए कि

- (i) $AB^2 = BC \cdot BD$
- (ii) $AC^2 = BC \cdot DC$
- (iii) $AD^2 = BD \cdot CD$

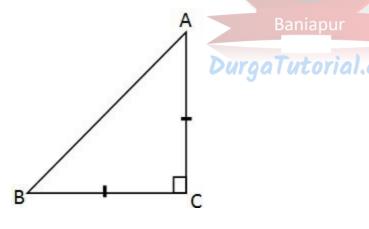
दिया है : ABD एक समकोण त्रिभुज है | जिसका कोण A समकोण है तथा AC \perp BD है |

सिद्ध करना है:

- (i) $AB^2 = BC \cdot BD$
- (ii) $AC^2 = BC \cdot DC$
- (iii) $AD^2 = BD \cdot CD$

प्रमाण : (i) ABD एक समकोण त्रिभुज है और

AC \perp BD दिया है |


 $\Delta ABC \sim \Delta ABD$ प्रमेय 6.7

अतः
$$\frac{AB}{BD} = \frac{BC}{AB}$$
 (समरूप त्रिभुज की संगत भुजाएँ समानुपाती होती हैं)

अतः
$$\frac{AC}{DC} = \frac{BC}{AC}$$
 (समरूप त्रिभुज की संगत भुजाएँ समानुपाती होती हैं)

अतः
$$\frac{AD}{CD} = \frac{BD}{AD}$$
 (समरूप त्रिभुज की संगत भुजाएँ समानुपाती होती हैं)

Q4. ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है | सिद्ध कीजिए कि $AB^2 = 2AC^2$ है

हल:

दिया है: ABC एक समद्विबाहु त्रिभुज है

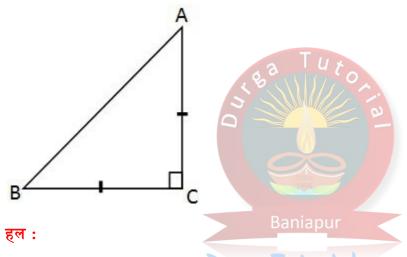
जिसका कोण C समकोण है |

सिद्ध करना है : $AB^2 = 2AC^2$

प्रमाण : ABC एक समद्विबाहु त्रिभुज है |

$$AC = BC$$
(i)

और ABC एक समकोण त्रिभुज है |


पाइथागोरस प्रमेय से

$$AB^2 = BC^2 + AC^2$$

अथवा $AB^2 = AC^2 + AC^2$ (समी० 1 से)

अथवा $AB^2 = 2AC^2$ Proved

Q5. ABC एक समद्विबाहु त्रिभुज है जिसमें AC = BC है | यदि $AB^2 = 2AC^2$ है, तो सिद्ध कीजिए कि ABC एक समकोण त्रिभुज है |

दिया है: ABC एक समद्विबाहु त्रिभुज है 9 वि पर्टावी COM

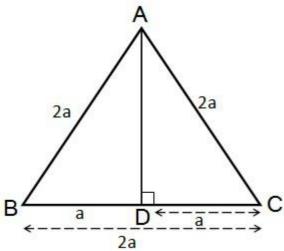
जिसमें AC = BC है और $AB^2 = 2AC^2$ है

सिद्ध करना है: ABC एक समकोण त्रिभुज है |

प्रमाण: AC = BC(1) दिया है

और $AB^2 = 2AC^2$ (दिया है)

अथवा $AB^2 = AC^2 + AC^2$


अथवा $AB^2 = BC^2 + AC^2$ (समी० 1 से)

अत: पाइथागोरस प्रमेय के विलोम (प्रमेय 6.9) से

ABC एक समकोण त्रिभुज है | Proved

Q6. एक समबाहु त्रिभुज ABC की भुजा 2a है। उसके प्रत्येक शीर्षलंब की लंबाई ज्ञात कीजिए।

हल: समबाहु त्रिभुज ABC की भुजा 2a है |

$$AB = BC = AC = 2a$$

रचना : AD ⊥ BC डाला |

अत: समकोण त्रिभुज ACD में

पाइथागोरस प्रमेय से,

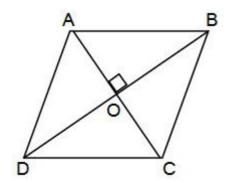
$$AC^2 = AD^2 + DC^2$$

$$(2a)^2 = AD^2 + (a)^2$$

$$4a^2 = AD^2 + a^2$$

$$AD^2 = 4a^2 - a^2$$

$$AD^2 = 3a^2$$


$$AD = \sqrt{3a^2}$$

$$AD = a\sqrt{3}$$

प्रत्येक शीर्षलंब की लंबाई = $a\sqrt{3}$

Q7. सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग उसके विकर्णों के वर्गों के योग के बराबर होता है।

दिया है: ABCD एक समचतुर्भुज है जिसकी

भुजाएँ AB, BC, CD तथा AD है | और विकर्ण

AC तथा BD एक दुसरे को O पर प्रतिच्छेद करते हैं |

सिद्ध करना है : $AB^2 + BC^2 + CD^2 + AD^2 = AC^2 + BD^2$

प्रमाण : समचतुर्भुज के विकर्ण एक दुसरे को समकोण पर समद्विभाजित करते हैं | इसलिए,

समकोण $\triangle AOB$ में पाइथागोरस प्रमेय से,

$$AB^2 = AO^2 + BO^2$$
(1)

इसीप्रकार ABOC, ACOD और AAOD में, Baniapur

$$BC^2 = CO^2 + BO^2$$
(2) rga Tutorial.com

$$CD^2 = CO^2 + DO^2$$
(3)

$$AD^2 = AO^2 + DO^2$$
(4)

समी० (1) (2) (3) और (4) जोड़ने पर

 $AB^2 + BC^2 + CD^2 + AD^2 = AO^2 + BO^2 + CO^2 + BO^2 + CO^2 + DO^2 + AO^2 + DO^2$

$$RHS = 2AO^2 + 2BO^2 + 2CO^2 + 2DO^2$$

$$= 2(AO^2 + BO^2 + CO^2 + DO^2)$$

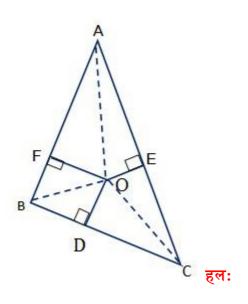
$$= 2 \left[\left(\frac{1}{2} \text{ AC} \right)^2 + \left(\frac{1}{2} \text{ BD} \right)^2 + \left(\frac{1}{2} \text{ AC} \right)^2 + \left(\frac{1}{2} \text{ BD} \right)^2 \right]$$

$$= 2 \left[\frac{1}{4} \text{ AC}^2 + \frac{1}{4} \text{ BD}^2 + \frac{1}{4} \text{ AC}^2 + \frac{1}{4} \text{ BD}^2 \right]$$

$$= 2 \times \frac{1}{4} \left[\text{AC}^2 + \text{BD}^2 + \text{AC}^2 + \text{BD}^2 \right]$$

$$= \frac{1}{2} \left[2 \text{AC}^2 + 2 \text{BD}^2 \right]$$

$$= \frac{1}{2} \times 2 \left[\text{AC}^2 + \text{BD}^2 \right]$$


$$= AC^2 + BD^2$$

$$\therefore AB^2 + BC^2 + CD^2 + AD^2 = AC^2 + BD^2$$
 Proved

Q8. आकृति में $\triangle ABC$ के अभ्यंतर में स्थित कोई बिंदु O है तथा OD_{\perp} BC, $OE_{\perp}AC$ और $OF_{\perp}AB$ है | दर्शाइए कि

(i)
$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$

(ii)
$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$

दिया है : ΔABC के अभ्यंतर में स्थित कोई बिंदु O है तथा OD \perp BC, OE \perp AC और OF \perp AB है |

सिद्ध करना है:

(i)
$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$

(ii)
$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$

प्रमाणः

समकोण \triangle AOF में, पाइथागोरस प्रमेय से

$$OA^2 = AF^2 + OF^2$$
(I)

समकोण Δ BOD में, पाइथागोरस प्रमेय से

$$OB^2 = BD^2 + OD^2$$
(II)

समकोण \triangle COE में, पाइथागोरस प्रमेय से

$$OC^2 = CE^2 + OE^2 \qquad (III)$$

समीकरण (I), (II) तथा (III) को जोड़ने पर

$$OA^{2} + OB^{2} + OC^{2} = AF^{2} + OF^{2} + BD^{2} + OD^{2} + CE^{2} + OE^{2}$$

$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$
 Proved I

अब, पुन:

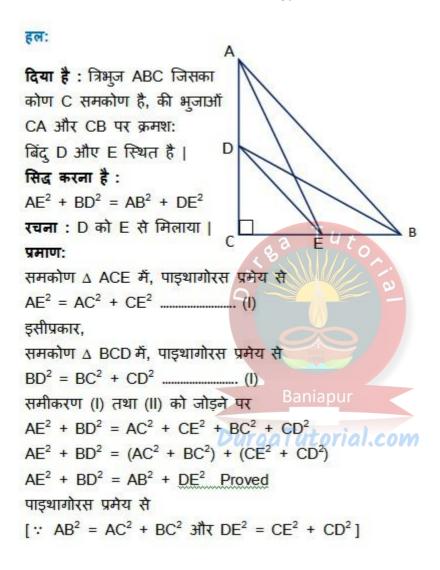
$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$

या
$$AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2$$

या
$$AF^2 + BD^2 + CE^2 = (OA^2 - OE^2) + (OB^2 - OF^2) + (OC^2 - OD^2)$$

या
$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$
 पाइथागोरस प्रमेय से

Q9.


Q10.

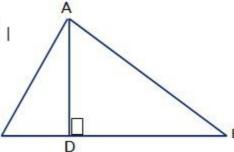
Q11.

Q12.

Q13. किसी त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमश: बिंदु D औए E स्थित है |

सिद्ध कीजिए कि $AE^2 + BD^2 = AB^2 + DE^2$ है |

Q14. किसी त्रिभुज ABC के शीर्ष A से BC पर डाला गया लंब BC को बिंदु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है |


सिद्ध कीजिए कि : $2AB^2 = 2AC^2 + BC^2$ है |

दिया है : ABC एक त्रिभुज है | जिसमें AD \perp BC है तथा

DB = 3CD 青 1

सिद्ध करना है:

$$2AB^2 = 2AC^2 + BC^2$$

प्रमाण:

$$CD = BC - BD$$

$$CD = BC - 3CD$$

$$4CD = BC$$

$$DB = \frac{3BC}{4}$$
(II)

समकोण A ACD में, पाइथागोरस प्रमेय से

$$AC^2 = AD^2 + CD^2$$

Or
$$AD^2 = AC^2 - CD^2$$
(III)

समकोण ∆ ABD में, पाइथागोरस प्रमेय से

$$AB^2 = AD^2 + BD^2$$

$$AB^2 = AC^2 - CD^2 + BD^2$$

$$AB^{2} = AC^{2} - CD^{2} + BD^{2}$$

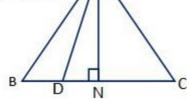
$$AB^{2} = AC^{2} - \left(\frac{BC}{4}\right)^{2} + \left(\frac{3BC}{4}\right)^{2}$$

$$AB^{2} = AC^{2} - \frac{BC^{2}}{16} + \frac{9BC^{2}}{16}$$

$$AB^{2} = AC^{2} + \frac{8BC^{2}}{16}$$

$$AB^{2} = AC^{2} + \frac{BC^{2}}{2}$$

$$2AB^2 = 2AC^2 + BC^2$$
 Proved


Q15. किसी समबाह् त्रिभुज ABC की भुजा BC पर एक बिंदु D तक इस प्रकार स्थित है कि BD = $\frac{1}{3}$ BC है | सिद्ध कीजिए कि $9AD^2 = 7AB^2$ है |

दिया है : ABC एक समबाहु त्रिभुज है ।

जिसमें BD =
$$\frac{1}{3}$$
 BC है |

सिद्ध करना है :

$$9AD^2 = 7AB^2$$

रचना : AN ⊥ BC खिंचा |

प्रमाण:

BD =
$$\frac{1}{3}$$
 BC दिया है | ----- (I)

BN =
$$\frac{1}{2}$$
 BC $\left[\because AN \perp BC \ \xi \dots \ \tau \ \exists \ m \ \xi \right] \dots (II)$

DN = BN - BD

$$= \frac{1}{2} BC - \frac{1}{3} BC$$
$$= \frac{3BC - 2BC}{6} = \frac{BC}{6}$$

समकोण △ ADN में, पाइथागोरस प्रमेय से

$$AD^2 = AN^2 + DN^2$$

Or
$$AN^2 = AD^2 - DN^2$$
(III)

समकोण Δ ABN में, पाइथागोरस प्रमेय सेBaniapur

$$AB^2 = AN^2 + BN^2$$

$$AB^{2} = AD^{2} - \left(\frac{BC}{6}\right)^{2} + \left(\frac{BC}{2}\right)^{2}$$

$$AB^{2} = AD^{2} - \frac{BC^{2}}{36} + \frac{BC^{2}}{4}$$

$$AB^{2} = AD^{2} - \frac{BC^{2} + 9BC^{2}}{36}$$

$$AB^{2} = AD^{2} + \frac{8BC^{2}}{36}$$

$$AB^{2} = AD^{2} + \frac{2BC^{2}}{9}$$

$$9AB^{2} = 9AD^{2} + 2BC^{2}$$

$$9AB^{2} = 9AD^{2} + 2AB^{2}$$

$$9AB^{2} = 9AD^{2}$$

$$7AB^{2} = 9AD^{2}$$

Q16. किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।

हल:

सिद्ध करना है :

$$3AB^2 = 4AD^2$$

प्रमाण: समकोण त्रिभुज ABD में, _B पाइथागोरस प्रमेय से

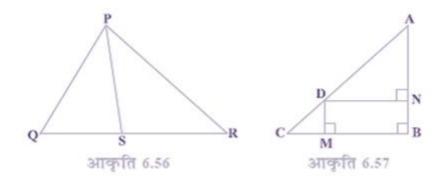
$$AB^2 = AD^2 + BD^2$$

Or
$$AB^2 = AD^2 + \left(\frac{BC}{2}\right)^2 \left[\because DB = \frac{1}{2}BC\right]$$

Or
$$AB^2 = AD^2 + \frac{BC^2}{4}$$

Or
$$4AB^2 = 4AD^2 + BC^2$$

Or
$$4AB^2 = 4AD^2 + AB^2$$
 [: $AB = BC$]


Or
$$4AB^2 - AB^2 = 4AD^2$$

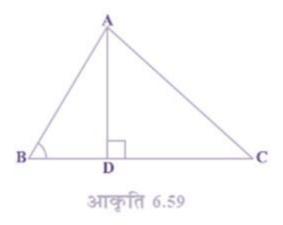
Or
$$3AB^2 = 4AD^2$$
 Proved

प्रश्नावली 6.6

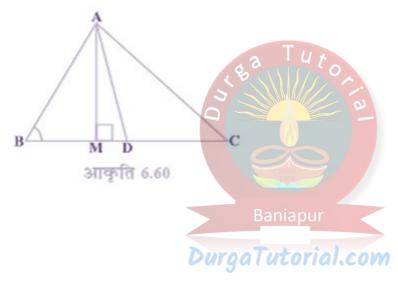
Q1. आकृति 6.56 में PS कोण QPR का समद्विभाजक है | सिद्ध कीजिए कि QS/SR PQ/PR

है।

Q2. अकृति 6.57 में D त्रिभुज ABC के कर्ण AC पर स्थित एक बिन्दु है तथा DM |BC और DN |AB है | सिद्ध कीजिए कि


(i) $DM^2 = DN.MC$

(ii) $DN^2 = DM.AN$


Q3. आकृति 6.58 में ABC एक त्रिभुज है जिसमें angle ABC >90° हा तथा AD| CB है | सिद्ध कीजिए की $AC^2 = AB^2 + BC^2 + 2BC.BD$ है |

Q4. अकृति 6.59 में ABC एक त्रिभुज है जिसमें angle ABC <90° है तथा AD| BC है | सिद्ध कीजिए कि AC² = AB² + BC² - 2 BC.BD है |

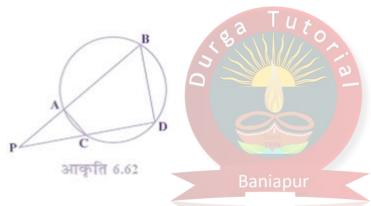
Q5. आकृति 6.60 में AD त्रिभुज ABC की एक माध्यिका है तथा AM|BC है | सिद्ध कीजिए की

- (i) $AC^2 = AD^2 + BC$. $DM + (BC/2)^2$
- (ii) $AB^2 = AD^2 BC.DM + (BC/2)^2$
- (iii) $AC^2 + AB^2 = 2AD^2 + 1/2 BC^2$

Q6.सिद्ध कीजिए कि एक समांतर चतुर्भुज के विकार्णों के वर्गों का योग उसकी भुजाओं के वर्गों के योग के बराबर होता है |

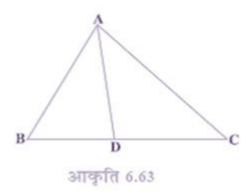
Q7. आकृति 6.61 में एक वृत्त की दो जिवाएँ AB और CD परस्पर बिन्दु प पर प्रतिच्छेद करती $\mathring{\xi}$ सिद्ध कीजिए कि

- (i) त्रिभुज APC ~ त्रिभुज DPB
- (ii) AP.PB = CP.DP

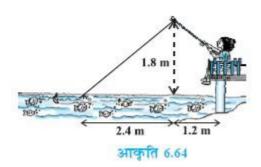


Q8. आकृति 6.62 में एक वृत्त की दो जिवाएँ AB और CD बढ़ाने पर परस्पर बिन्दु P पर करती हैं | सिद्ध कीजिए कि

प्रतिच्छेद


(i) त्रिभुज PAC ~ त्रिभुज PDB

(ii) PA. PB = PC.PD


Q9. आकृति 6.63 में त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि AB/AC है | सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है |

BD/CD

Q10. नाजिमा एक नदी की धारा में मछलियाँ पकड़ रही है | उसकी मछली पकड़ने वाली छड़ का सिरा पानी की सतह से $1.8~\mathrm{m}$ ऊपर है तथा डोरी के निचले सिरे से लगा काँटा पानी के सतह पर इस प्रकार स्थित है कि उसकी नाजिमा से दुरी $3.6~\mathrm{m}$ है और छड़ के सिरे के ठीक नीचे पानी के सतह पर स्थित बिन्दु से उसकी दुरी $2.4\mathrm{m}$ है | यह मानते हुए कि उसकी डोरी (उसकी छड़ के सिरे से काँटे तक) तनी हुई है, उसने कितनी डोरी

बाहर निकाली हुई है (देखिए आकृति 6.64) ? यदि वह डोरी को $5~{\rm cm}\ /{\rm s}$ की दर से अन्दर खींचे, तो 12 सेकंड के बाद नाजिमा की काँटे से क्षैतिज दुरी कितनी होगी ?

